Improve your ML workflows with synthetic data
As a data scientist, you know that high-performance machine learning models cannot exist without a large amount of high-quality data to train and test them. Most of the time, building an appropriate machine learning model is not a problem: there are plenty of architectures available, and since it is part of your job, you know exactly which one will best suit your use case. However, having a large amount of high-quality data can be much more challenging: you need a labeled and cleaned dataset matching exactly your use case. Unfortunately, such a dataset is usually not already available. Maybe you only have a few data matching your requirements, maybe you have data but they are not matching exactly what you want (they can have biases or unbalanced classes for example), or maybe a dataset exists but you cannot access it because it contains private information. Therefore, you need to collect new data, label them and clean them, which can be a time-consuming and costly process, or even not be possible at all.